Forest biomass mapping in Sweden

Johan Fransson, Håkan Olsson, Mats Nilsson, Jörgen Wallerman, Henrik Persson, Jonas Bohlin, Andreas Pantze and Jonas Fridman
Swedish University of Agricultural Sciences, Sweden

Maurizio Santoro
Gamma Remote Sensing, Switzerland

Leif Eriksson and Lars Ulander
Chalmers University of Technology, Sweden

Anders Persson
Swedish Forest Agency, Sweden
Outline

- New National Digital Elevation Model
- Swedish forest map – kNN Sweden
- ALOS PALSAR (clear-cuts and biomass)
- TanDEM-X (height and biomass)
- Aerial Photogrammetry (height and biomass)
- Summary
New National Digital Elevation Model

- 400 ALS scanning areas, 25 km × 50 km
- Scanning time span 2009-2013
- At least 0.5 pulse / m², 2.0 m grid
- ALS data not primarily collected to be used for forest variable prediction
Outline

• New National Digital Elevation Model
• Swedish forest map – kNN Sweden
• ALOS PALSAR (clear-cuts and biomass)
• TanDEM-X (height and biomass)
• Aerial Photogrammetry (height and biomass)
• Summary
National Forest Inventory

Tract location

Temporary tracts (ca 550 per yr)
Permanent tracts (ca 900 per yr)
Satellite images

Landsat ETM+
Band:
- Blue
- Green
- Red
- Near-infrared
- Mid-infrared (2 bands)
- Thermal

Pixel size: 30 m
Flight altitude: 700 km
kNN Sweden 2000

- Landsat TM and ETM+ from 1997-2001
- Field data from the National Forest Inventory
- Forest boundaries according to GSD road map
- Covers 96% of the forest area
- Available via Internet (http://skogskarta.slu.se/)
kNN Sweden 2005

- SPOT images from 2005-2006
- Field data from the National Forest Inventory
- Forest boundaries according to GSD road map
- Covers 96% of the forest area
- Available via Internet (http://skogskarta.slu.se/)
kNN Sweden 2010

- SPOT images from ~ 2010
- Field data from the National Forest Inventory
- Forest boundaries according to GSD road map
- Covers 96% of the forest area
- Available via Internet (http://skogskarta.slu.se/)
kNN Sweden 2015?

- Optical + laser + ???
- Field data from the National Forest Inventory
- Forest boundaries according to GSD road map
- Covers 96% of the forest area
- Available via Internet (http://skogskarta.slu.se/)
Accuracy assessment (standing volume)
Users

- SLU
- Swedish Forest Agency
- County councils
- Environmental Protection Agency
- Swedish Tax Agency
- Forestry companies
- Other universities
- Etc.
Outline

• New National Digital Elevation Model
• Swedish forest map – kNN Sweden
• ALOS PALSAR (clear-cuts and biomass)
• TanDEM-X (height and biomass)
• Aerial Photogrammetry (height and biomass)
• Summary
First Nordic mosaic – satellite radar

- **ALOS PALSAR (JAXA)**
- **63 strips from 43 orbital tracks**
- **June – October 2009**
- **Fine Beam Dual (FBD34)**
- **Mosaic:**
 - Red (HH-backscatter)
 - Green (HV-backscatter)
 - Blue (HH/HV ratio)

→ Clear-cut detection
→ Biomass estimation
Yearly mosaics of PALSAR strip images covering Sweden
Project objectives
To further develop and evaluate methods for large-scale mapping and monitoring of clear-cuts and possibly stem volume for the entire Sweden using ALOS PALSAR data.

Results
The LN-GKIT algorithm is tested in combination with a Markovian data fusion approach for detecting changes in dual-pol SAR data. The method is robust for both detection and delineation of clear-cuts, thus representing a substantial improvement with respect to the simple thresholding method developed during Phase 1.

K&C Science Team members
Johan Fransson and Håkan Olsson, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
Leif Eriksson and Lars Ulander, Chalmers University of Technology, Sweden
Maurizio Santoro, GAMMA Remote Sensing, Switzerland

ALOS PALSAR data used
Single images: FBS 34.3°HH and FBD 34.3°HH+HV, since ALOS start

Strip data: FBS (1 x year) and FBD (2 x year) 34.3°

Other data sources
Forest inventory data, DEM

Performance of clear-cut detection method applied to a pair of FBD images acquired in 2007 and 2008 for a 1.2 × 0.9 km² area. Left column: HH ratio (top), HV ratio (middle) and SPOT-4 HRV-IR red band reflectance difference image (bottom). Right column: detected change from HH ratio (top), HV ratio (middle) and fused HH and HV data (bottom).
Support to JAXA’s global forest mapping effort

Biomass mapping – Phase 3:

- Use PALSAR strip data for the entire Sweden (2008-2010) (base year 2010). Here, a comparison also will be made against the estimates of biomass obtained from combining sample plot data from the Swedish National Forest Inventory and optical satellite data (*kNN*-Sweden 2010)
Backscatter vs. stem volume

\[\sigma^\circ_{for} = \sigma^\circ_{gr} \times e^{-\beta V} + \sigma^\circ_{veg} \times (1 - e^{-\beta V}) \]

\[\sigma^\circ_{gr} = -10.5 \text{ dB} \]

\[\sigma^\circ_{veg} = -6.0 \text{ dB} \]

\[\beta = 0.003 \text{ ha m}^{-3} \]

ALOS PALSAR FBS 34.3° HH, 2007-01-29
Outline

• New National Digital Elevation Model
• Swedish forest map – kNN Sweden
• ALOS PALSAR (clear-cuts and biomass)
• TanDEM-X (height and biomass)
• Aerial Photogrammetry (height and biomass)
• Summary
TanDEM-X

- TerraSAR-X add-on for Digital Elevation Measurement
- Interferometric SAR mission
- German Aerospace Center (DLR) and EADS Astrium GmbH
- Two identical satellites in a closely controlled formation
Surface model from 3D data

- DSM [m a.s.l.]
- DEM [m a.s.l.]
- $\Delta = \text{CHM} [\text{m a.g.l.}]$

Height to backscatter center
National Laser DEM of Sweden

- Produced by Swedish National Land Survey
 2009-2013
- Using Airborne Laser Scanning, > 0.5 pulse / m\(^2\)
- 2.0 m raster grid
- RMSE < 0.5 m
Penetration increases with wavelength
Prediction of height and biomass

• 214 plots used for training and 25 plots for validation (10 m radius)
• Height and biomass **training** sets obtained from field inventory 2010
• Height and biomass **validation** sets obtained from field inventory 2011
• TanDEM-X image used is from June 4, 2011 with VV-polarization and Hoa = 49 m
• Models developed with regression analysis
Regression models

Biomass
\[AGB = \alpha_0 + \alpha_1 H_{\text{mean}}^2 + \varepsilon \]

Height
\[H = \alpha_0 + \alpha_1 H_{\text{max}} + \varepsilon \]
Height – validation data (10 m radius)

RMSE = 6.2%
Biomass – validation data (10 m radius)

RMSE = 23.1%
Comparison TanDEM-X & LiDAR

FROM TANDEM-X

FROM LIDAR
Outline

• New National Digital Elevation Model
• Swedish forest map – kNN Sweden
• ALOS PALSAR (clear-cuts and biomass)
• TanDEM-X (height and biomass)
• Aerial Photogrammetry (height and biomass)
• Summary
Digital Mapping Camera (Z/I DMC) available in Sweden since 2004
Sensor for 3D-data
Z/I DMC

- Zeiss/intergraph Digital Mapping Camera
- Multispectral and panchromatic sensors
- Operated by Swedish Land Survey for standard photography – 4800 m flight altitude, 60%/30% stereo overlap
Remningstorp study area

- 1600 ha of boreal forest in southern Sweden
- Consisting of mainly Norwegian spruce, Scotts pine and Birch
- Field data: 696 circular plots (10 m radius), geo-referenced by DGPS
- 41 forest stands. Stand delineation made in aerial stereo images. Used for validation.
Data

- Digital Elevation Model from the Topeye ALS
- 3D data from Z/I DMC
 - 4800 m 60%/30% standard altitude and stereo overlap
 - Point cloud generation available using automatic matching of stereo imagery, such as MatchT (Inpho)
Photogrammetric point cloud
Photogrammetric point cloud
Area-based estimation

- Tree height
- Stem volume
- Basal area

![Graphs showing estimated vs. surveyed values for tree height, stem volume, and basal area.](Image)
Validation

<table>
<thead>
<tr>
<th>Data set</th>
<th>Flight altitude</th>
<th>Image overlap</th>
<th>Dependent variable</th>
<th>Independent variables</th>
<th>R2 Adjusted</th>
<th>Bias</th>
<th>Bias%</th>
<th>RMSE</th>
<th>RMSE%</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set (a)</td>
<td>4800 m</td>
<td>60%/30%</td>
<td>Tree height</td>
<td>p_{80}</td>
<td>0.86</td>
<td>0.6</td>
<td>3.5</td>
<td>1.6</td>
<td>8.8</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stem volume</td>
<td>p_{80}, CON, d_{40}</td>
<td>0.72</td>
<td>3.6</td>
<td>1.4</td>
<td>32.8</td>
<td>13.1</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basal area</td>
<td>p_{80}, CON, d_{50}</td>
<td>0.78</td>
<td>0.2</td>
<td>0.8</td>
<td>4.0</td>
<td>14.9</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Outline

• New National Digital Elevation Model
• Swedish forest map – kNN Sweden
• ALOS PALSAR (clear-cuts and biomass)
• TanDEM-X (height and biomass)
• Aerial Photogrammetry (height and biomass)
• Summary
Summary

• Radar, optical, laser
• Air- and spaceborne systems
• Moving from 2D to 3D (4D) remote sensing
• Tree, plot, stand, regional and national level
• Automated / semi-automated methods
• Forestry applications (biomass, clear-cuts, etc.)

→ Authorities, forest companies, universities, etc.
New possibilities and challenges!!!

National Land Survey’s laser scanning

BIOMASS – ESA Earth Explorer Mission

TanDEM-X

ALOS PALSAR -2

Digital aerial photos

Swedish University of Agricultural Sciences
Department of Forest Resource Management
Thank you for your attention!